

Cluster Computing with OpenHPC

Karl W. Schulz, Ph.D. Technical Project Lead, OpenHPC Community Scalable Datacenter Solutions Group, Intel

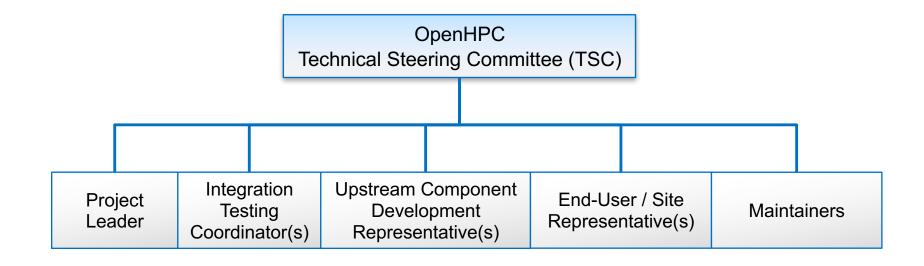
HPCSYSPROS16 Workshop, SC'16 November 14 • Salt Lake City, Utah

Acknowledgements

- <u>Co-Authors</u>: Reese Baird, David Brayford, Yiannis Georgiou, Gregory Kurtzer, Derek Simmel, Thomas Sterling, Nirmala Sundararajan, Eric Van Hensbergen
- OpenHPC Technical Steering Committee (TSC)
- Linux Foundation and all of the project members
- Intel, Cavium, and Dell for hardware donations to support community testing efforts
- Texas Advanced Computing Center for hosting support

Outline

- Community project overview
 - mission/vision
 - members
 - governance
- Stack overview
- Infrastructure: build/test
- Summary


OpenHPC: Mission and Vision

- <u>Mission</u>: to provide a reference collection of open-source HPC software components and best practices, lowering barriers to deployment, advancement, and use of modern HPC methods and tools.
- <u>Vision</u>: OpenHPC components and best practices will enable and accelerate innovation and discoveries by broadening access to state-of-the-art, open-source HPC methods and tools in a consistent environment, supported by a collaborative, worldwide community of HPC users, <u>developers, researchers,</u> <u>administrators, and vendors</u>.

Mixture of Academics, Labs, OEMs, and ISVs/OSVs Project member participation interest? Please contact Jeff ErnstFriedman jernstfriedman@linuxfoundation.org

OpenHPC Technical Steering Committee (TSC) Role Overview

https://github.com/openhpc/ohpc/wiki/Governance-Overview

Stack Overview

- Packaging efforts have HPC in mind and include compatible modules (for use with Lmod) with development libraries/tools
- Endeavoring to provide hierarchical development environment that is cognizant of different compiler and MPI families
- Intent is to manage package dependencies so they can be used as building blocks (e.g. deployable with multiple provisioning systems)
- Include common conventions for env variables
- Development library install example:

```
# yum install petsc-gnu-mvapich2-ohpc
```

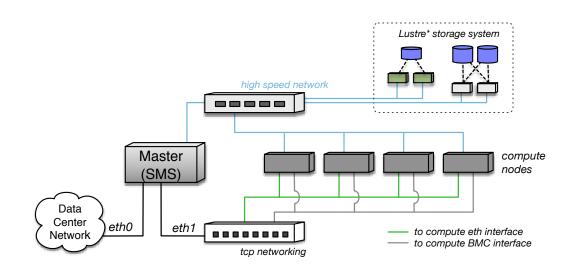
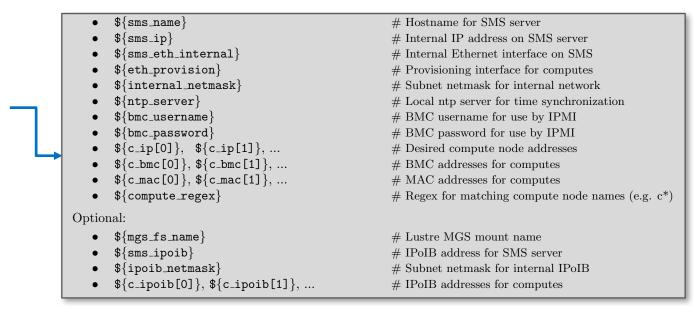
• End user interaction example with above install: (assume we are a user wanting to build a PETSC hello world in C)

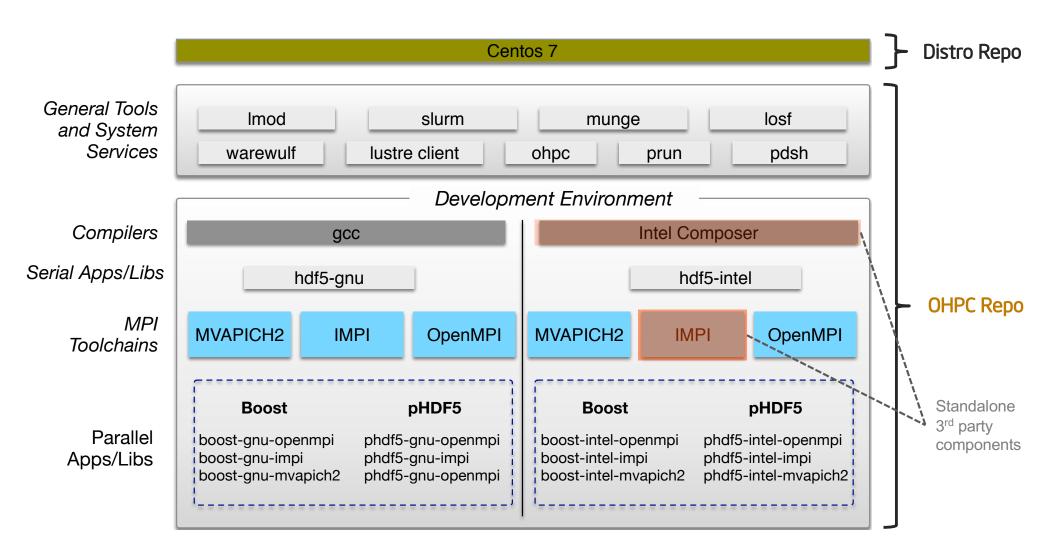
\$ module load petsc

\$ mpicc -I\$PETSC_INC petsc_hello.c -L\$PETSC_LIB -lpetsc

Typical Cluster Architecture

- Install guides walk thru bare-metal install
- Leverages image-based provisioner (Warewulf)
 - PXE boot (stateless)
 - optionally connect external Lustre file system
- Obviously need hardware-specific information to support (remote) bare-metal provisioning

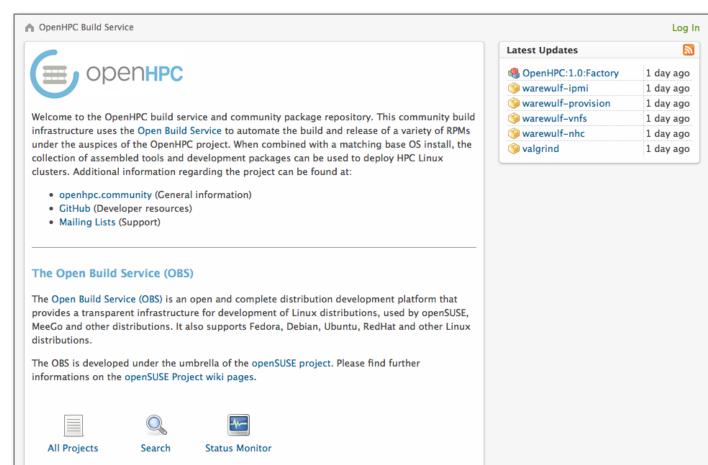




Figure 1: Overview of physical cluster architecture.

OpenHPC v1.2 - Current S/W components

Functional Areas	Components	
Base OS	CentOS 7.2, SLES12 SP1	
Architecture	x86_64, aarch64 (Tech Preview)	
Administrative Tools	Conman, Ganglia, Lmod, LosF, Nagios, pdsh, prun, EasyBuild, ClusterShell, mrsh, Genders, Shine, Spack	
Provisioning	Warewulf	Notes:Additional dependencies
Resource Mgmt.	SLURM, Munge, PBS Professional	that are not provided by the BaseOS or community
Runtimes	OpenMP, OCR	repos (e.g. EPEL) are also
I/O Services	Lustre client (community version)	included
Numerical/Scientific Libraries	Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, SuperLU_Dist, Mumps, OpenBLAS, Scalapack	 3rd Party libraries are built for each compiler/MPI family (8 combinations typically)
I/O Libraries	HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios	Resulting repositories
Compiler Families	GNU (gcc, g++, gfortran)	currently comprised of ~300 RPMs
MPI Families	MVAPICH2, OpenMPI, MPICH	
Development Tools	Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy	
Performance Tools	PAPI, IMB, mpiP, pdtoolkit TAU, Scalasca, ScoreP, SIONLib	

Hierarchical Overlay for OpenHPC software



	 single input drives all permutations 	
open <mark>HPC</mark>	 packaging conventions highlighted further in paper 	10

Infrastructure

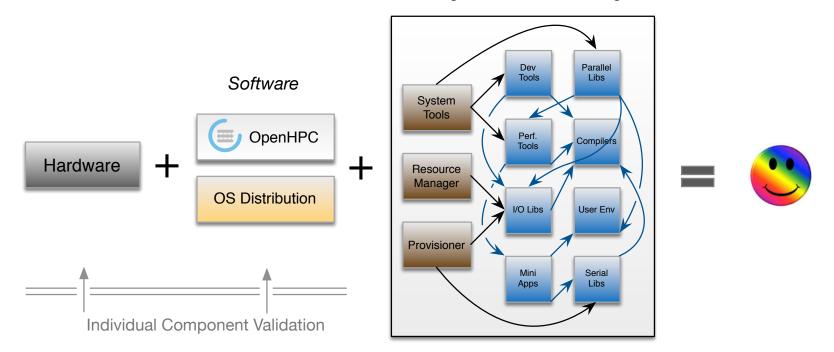
Community Build System - OBS

https://build.openhpc.community

- Using the Open Build
 Service (OBS) to manage
 build process
- OBS can drive builds for multiple repositories
- Repeatable builds carried out in chroot environment
- Generates binary and src rpms
- Publishes corresponding package repositories
 - Client/server architecture supports distributed build slaves and multiple architectures

•

Integration/Test/Validation


Testing is a key element for us and the intent is to build upon existing validation efforts and augment component-level validation with targeted cluster-validation and scaling initiatives including:

• install recipes

development environment

• cross-package interaction

• mimic use cases common in HPC deployments

Integrated Cluster Testing

Post Install Integration Tests - Overview

Global testing harness includes a number of embedded subcomponents:

- major components have configuration options to enable/disable
- end user tests need to touch all of the supported compiler and MPI families
- we abstract this to repeat the tests with different compiler/MPI environments:
 - gcc/Intel compiler toolchains
 - MPICH, OpenMPI, MVAPICH2, Intel MPI families

Build user	:	jilluser
Build host	:	master4-centos71.localdomain
Configure date	:	2015-10-26 09:23
Build architecture	:	x86_64-unknown-linux-gnu
Test suite configuration	:	long

Package version..... : test-suite-1.0.0

Submodule Configuration:

User Environment: RMS test harness..... Munge..... Apps..... Compilers..... MPI..... HSN..... Modules..... ООМ..... Dev Tools: Valgrind..... R base package..... TBB.... CILK..... Performance Tools: mpiP Profiler..... Papi..... PETSc.... TAU.....

Libraries: Adios : enabled Boost : enabled Boost MPI..... : enabled FFTW..... : enabled GSL..... : enabled HDF5..... enabled HYPRE..... enabled IMB..... : enabled Metis....: enabled MUMPS..... : enabled NetCDF..... : enabled Numpy..... : enabled OPENBLAS..... : enabled PETSc..... : enabled PHDF5.... enabled ScaLAPACK..... : enabled Scipy.....: enabled Superlu..... : enabled Superlu dist..... : enabled Trilinos : enabled Apps: MiniFE..... : enabled MiniDFT..... : enabled HPCG....: enabled

Example ./configure output (non-root)

Community Test System (CI) - Jenkins

http://test.openhpc.community:8080

Denhpc Jenkins		search	0	KARL W. SCHULZ	LOG OUT
Jenkins 🕨				ENABLE AU	UTO REFRESH
(+) New Item	OpenHPC CI Infrastructure Thanks to the Texas Advanced Computing Center (TACC) for hosting suppo	ort and to Intel Cavium and	Doll for bardware donat	ions	
People	marks to the recas Advanced computing center (IACC) for hosting suppo	ort and to men, cavium, and			description
🕓 Build History	1.1.1 1.2 All Interactive admin +				
Edit View	S W Name↓	Last Success	Last Failure	Last Duration	
(i) Project Relationship	父 🗘 (1.2) - (centos7.2,x86_64) - (warewulf+pbspro) - long cycle	1 day 8 hr - #39	N/A	58 min	\bigcirc
Check File Fingerprint	Q Q Q (1.2) - (centos7.2,x86_64) - (warewulf+pbspro) - short cycle	1 day 4 hr - #155	4 days 10 hr - #109	14 min	\bigcirc
Manage Jenkins	文 🗘 (1.2) - (centos7.2,x86_64) - (warewulf+slurm) - long cycle	2 days 4 hr - #244	4 days 4 hr - #219	1 hr 0 min	\bigcirc
My Views		2 hr 46 min - #55 4	8 days 15 hr - #349	14 min	\bigcirc
📎 Lockable Resources		1 day 6 hr - #39	4 days 10 hr - #20	2 hr 29 min	\bigcirc
Or Credentials	文 🔅 (1.2) - (sles12sp1,x86_64) - (warewulf+pbspro) - short cycle	1 day 3 hr - #166	4 days 10 hr - #86	12 min	\bigcirc
	📀 🍳 (1.2) - (sles12sp1,x86_64) - (warewulf+slurm) - short cycle	1 day 2 hr - #259	8 days 20 hr - #7 2	14 min	\bigcirc
Build Queue	📀 🎄 (1.2) - (sles12sp1,x86_64) - (warewulf,slurm) - long test cycle	1 day 5 hr - #97	6 days 19 hr - #41	54 min	\bigcirc
No builds in the queue.	🋕 🔅 (1.2) - aarch64 - (centos7.2) - (warewulf+slurm)	2 days 21 hr - #3	N/A	0.41 sec	\bigcirc
····	🛕 🖄 (1.2) - aarch64 - (sles12sp1) - (warewulf+slurm)	1 day 8 hr - #45	2 days 21 hr - #41	2 hr 13 min	\bigcirc

These tests periodically installing bare-metal clusters from scratch using OpenHPC recipes and then run a variety of integration tests.

Component Additions?

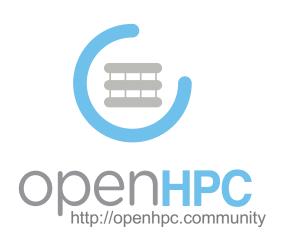
- A common question posed to the project has been how to request new software components? In response, the TSC has endeavored to formalize a simple submission/review process
- Submission site went live last month:

https://github.com/openhpc/submissions

- Expecting to do reviews every quarter (or more frequent if possible)
 - just completed first iteration of the process now
 - next submission deadline: December 4th , 2016

	during submission process
Softwar	e Name
Public L	JRL
Technic	al Overview
Latest s	stable version number
Open-so	ource license type
Relatior	nship to component?
□ cont	ributing developer
user	
othe	r
lf other,	please describe:
Build sy	stem
auto	tools-based
🗆 CMa	
	r

Subset of information requested


Summary

- Community formalized as Linux Foundation collaborative project in May, 2016
- Technical Steering Committee (TSC) has been working together since the beginning of the summer
 - established a starting component selection process
 - latest release (Nov. 2016) incorporated additions based on this process
 - e.g. MPICH, PBS Pro, Scalasca/ScoreP
 - future addition to include xCAT based recipe
- OpenHPC BoF at SC'16
 - Wednesday, Nov. 16th (1:30-3pm)
- We welcome participation from other interested researchers and end-user HPC sites

Information/Places to Interact

http://openhpc.community (general info) https://github.com/openhpc/ohpc (GitHub site) https://github.com/openhpc/submissions (new submissions) https://build.openhpc.community (build system/repos) http://www.openhpc.community/support/mail-lists/ (email lists)

- openhpc-announce
- openhpc-users
- openhpc-devel

Thanks for your Time - Questions?

karl.w.schulz@intel.com